Astronomical Data Analysis Software and Systems XVI
ASP Conference Series, Vol. 376, 2007
R. A. Shaw, F. Hill and D. J. Bell, eds.

Developing Sherpa with Python

S. Doe, D. Nguyen, C. Stawarz, B. Refsdal, A. Siemiginowska, D. Burke,
I. Evans, J. Evans, J. McDowell

Smithsonian Astrophysical Observatory, Cambridge, MA, USA

J. Houck, M. Nowak

MIT Kavli Institute for Astrophysics and Space Research, Cambridge,
MA, USA

Abstract. Sherpa is the general purpose fitting and modeling application
for CTAO, the Chandra Interactive Analysis of Observations system. We have
modified the original design and implemented a new version in Python. This
version will be part of the upcoming CIAO4.0 release. We have previously
presented a modular, flexible design for CIAO4.0 with the goal of packaging
many models, fitting methods and statistics for analysis of astronomical data.
The new design promised to be more robust than the previous Sherpa, and
more easily extensible with user-written scripts. (We already see some sign of
this, in that there were 50,000 lines of code in the CIAO3.0 implementation;
with our new, cleaner design, implemented in Python, only half that number
of lines were required.) We present the latest updates to our design, and our
progress developing Sherpa. A major feature of this work has been the use
of Python to implement the data structures from our design. Each part of
Sherpa—models, fitting methods, statistics, and so on—has been implemented
as a Python module. We have also developed application code to bind together
data, models, statistics, and fitting methods for performing fits to data, as well as
a high-level Ul that makes it simple for users to read in data, define models, and
perform fits. Working in Python has been a great aid in speeding development
of Sherpa. We expect that Python will also simplify extending and maintaining
the Sherpa code base, as well as making it possible to interoperate with other
Python-based astronomy packages. To make Sherpa fully accessible to S—Lang
users, we use PySL, a new package that is an interface between Python and S—
Lang. Users are now able to import other Python or S—Lang modules to extend
Sherpa; in addition, users may write and use scripts of their own, written in
either Python or S-Lang.

1. Design and Python Implementation

The design of Sherpa is in three layers, as shown in Figure 1. The base modules
constitute the first layer; each module provides a set of functions (models, op-
timization functions, statistics, and also astronomy-specific functions) that are
needed by the application. But each base module is independent, and can be
used by itself in other programs. The C++ or Fortran functions they wrap can
be directly linked to standalone programs (e.g., a C program that needs only to
calculate Sherpa models), without having to link to Python or any other Sherpa
modules. Any of the modules in this layer can also be loaded into Python. We

043

544 Doe et al.

all data sets High-level functions:
all models load_data(1, "file.fits")
Ul Layer Session set_model(abs.al * powlaw1d.p1)
"High-Level" current optimizer fit(1)
Python Functions current statistic plot_fit(1)
Data
Application Layer -
Python Classes t [r
Chi2DataVar
[DatatD | [Data2d |
Base Layer astro | | models | | optmethods | | stats
Python Modules
Embedded Functions T T T T
Compiled Code
| Fortran/C++ | | C++ | | Fortran/C++ | | C++
XSPEC 12 gaussian Imdif chi-squared
models power-law nelder-mead cash

Figure 1. Base, application, and Ul layers of the Sherpa design.

use NumPy! to provide support for numerical arrays. NumPy is the sole Python
dependency for the base modules.

The second layer is the application layer. This layer contains the logic
needed for the Sherpa application to fit models to data (along with other science
functions). Data classes encapsulate data sets; Fit containers group data and
models together, for the duration of a fit.

The third layer is the UI layer. This layer contains master lists of all the
data sets loaded into Sherpa, all the models that are tied to data sets, and
pointers to the currently used optimization method and fit statistic. It also
provides “high-level” functions to make it easier for users to read in data, create
and assign models to data sets, fit models to data, and visualize results.

2. Python and S-Lang

Any base module, or all of the Sherpa modules, can be imported into Python.
For users interested in the whole package, we provide a module (sherpa.astro.ui)
that automatically loads all the Sherpa modules, including the modules specific
to astronomy and the high-level Ul, into Python. As Figure 2 shows, we can load
Sherpa into a variety of Python environments. Sherpa can be directly loaded

"http:/ /numpy.scipy.org

Python:

>>> from sherpa.astro.ui
import *
>>> load_data(1,"file.fits")

Developing Sherpa with Python

IPython:

In [1]: from sherpa.astro.ui
import *
In [2]: load_data(1,"file.fits")

S-Lang (slsh):

slsh> require("sherpa");
slsh> load_data(1,"file.fits");

PySL

545

Python/S-Lang interface module
from sherpa.astro.ui import *

all data sets High-level functions:
load_data(1, "file.fits")
Ul Layer Session all models set_model(abs.a1 * powlaw1d.p1)
"High-Level" current optimizer fit(1)
Python Functions current statistic plot_fit(1)

Figure 2. Sherpa modules in a variety of environments.

into Python, or can be loaded into other Python environments that provide an
interactive UI, such as IPython.

We also provide support for our existing S-Lang users. S-Lang? is an
interpreted language that can be embedded into other applications, and has been
used to extend CIAO 3.0. The new package PySL? is a general interface between
Python and S-Lang. We use PySL to make the Sherpa package accessible from
S-Lang. We also provide a S-Lang module that automatically loads PySL and
Sherpa, and wraps all the high-level UI functions. Ideally, S-Lang users should
not need to know that Sherpa is running Python under the hood.

3. An Example Sherpa Session

A short session illustrating Sherpa functions is shown here. A file containing an
X-ray spectrum is read in, and a model consisting of an absorption model and
a power-law is fit to the data. The results are shown in Figure 3.

>>>
>>>
>>>
>>>
>>>
>>>
>>>

load_pha("3c273.pi")

notice_id(1, 0.1, 6.0)

subtract ()

set_model (xsphabs.absl * powlawld.pl)
absl.nH = 0.07

freeze(absl.nH)

fit ()

2http://www.s-lang.org
3http://software.pseudogreen.org/pysl

546 Doe et al.

< 0.015
=<
o r
$ 001f
8 :
= r
3 0.005F
o [

0 . .

0 1 2 3 4 5
Energy (keV)
Sigma Residuals of 3c273.pi

P LA L L L E

3 E
:
> I
o of

3

Energy (keV)

Figure 3. Plot of data, model and residuals created by a Sherpa fitting session.

4. Interfaces to non-CIAO Packages

Sherpa will be released as part of CIAO 4.0. When used within CIAO, Sherpa
automatically imports Python modules that are interfaces to CRATES (the
new CIAO Data Model interface), ChIPS (the Chandra Imaging and Plotting
System), and DS9 (the SAO imager). However, we have designed Sherpa so that
it can be built and used without other CIAO components. If Sherpa alone is
present, then the user may substitute PyFITS for CRATES, and matplotlib for
ChIPS. We include “back-end” interfaces to PyFITS and matplotlib. If these
modules are present, they are detected at runtime. If the rest of CIAO is not
present, PyFITS and matplotlib are automatically loaded.

Our new Python implementation has helped us design a version of Sherpa
that will be easier to build and run as a stand-alone application.

Acknowledgments. Support of the development of Sherpa is provided by
the National Space and Aeronautics Administration through the Chandra X-ray
Center, which is operated by the Smithsonian Astrophysical Observatory for and
on behalf of NASA through contract NAS-03060.

