

National Reconnaissance Office

DATA BOOK

TOP SECRET

Handle Via TALENT - KEYHOLE Control Only

SDA-A-2

TCS-20292/70

Copy __

14 00075643D

(18.1)

THE KH-8B CAMERA SYSTEM

THIRD EDITION

PUBLISHED BY
NATIONAL PHOTOGRAPHIC INTERPRETATION CENTER
OCTOBER 1970

Group I Excluded from Automatic Downgrading and Declassification

TOP SECRET

Handle Via TALENT - KEYHOLE Control Only

TOP SECRET

TCS-20292/70

PREFACE

This data book has been prepared by the National Reconnaissance Office with the assistance of the National Photographic Interpretation Center to facilitate the use of the photography from the KH-8B camera system. This book revises and updates previous releases concerning this system.

Third Edition

October 1970

- i -

Handle Via TALENT-KEYHOLE Control System Only

TOP SECRET

TCS-20292/70

TABLE OF CONTENTS

		Page
INTRODUCTION	 	 1
MAIN CAMERA	 	 1
Strip Camera	 	 1
Optics	 	 1
Film Drive	 	 2
Exposure	 	 3
Control	 	 3
Modes of Operation	 	 5
Start-up Times and Film Coast	 	 .8
Format	 	 8
Titling Information	 	 9
Recorded Data	 	 9
ASTRO-POSITION TERRAIN CAMERAS	 	14
Terrain Camera		
Titling Information		
Data		
Stellar Camera		19
Titling Information		19
Data		23
APTC Operation		
GLOSSARY		24

TOP SECRET

TCS-20292/70

INTRODUCTION

The KH-8B camera system (Figure 1) consists of four cameras and two recovery buckets. Various improvements are designed to increase the primary camera resolution by about 30% and increase the lifetime of the vehicle by an additional 6 days over the next 10 missions (starting with 27). The Primary camera is designed to produce high-resolution, large-scale photography of selected target areas.

A separate unit, the Astro-Position Terrain Camera (APTC), contains the other 3 cameras, one 75mm focal length terrain frame camera and dual 90mm focal length stellar cameras. The terrain camera is designed to point in the direction of the principal ray of the main camera. It provides mapping coverage and images for relative orientation. The stellar cameras are pointed 180 degrees apart, one to the port (left) side of the vehicle and one to the starboard (right) side. These provide at least one reduceable stellar frame with each main camera frame. The APTC will also be improved by providing a larger film load.

MAIN CAMERA

Strip Cameras

A strip camera is a device which stabilizes an image in the focal plane of the camera by moving film past a stationary slit at the same speed that the image is moving past the slit. When these two motions are synchronized, an unsmeared image is recorded on the film.

If these motions are not synchronized, the images are distorted by either compression or elongation in the direction of film movement.

Mensuration techniques allow for these variations in film speed and permit determination of changes in film speed with a high degree of accuracy.

When the camera is operating normally, the film speed should be within 0.6 mm/sec of the speed desired, except during looper action and start up transients. Image distortion will also occur if the film speed drive malfunctions or is commanded to operate at the wrong speed. However, this compression or elongation will not be discernible to the photointerpreter, and proper mensuration techniques still permit accurate mensuration of images on the film.

Optics

The optical part of the main camera consists of a flat stereo mirror, an aspheric mirror used as a converging lens, a corrector lens assembly, a slit, and a platen.

TOP SECRET

TCS-20292/70

Exposure

Film speed, slit size, and sun angle determine the exposure of images on the film. Since the film speed is determined by the speed of images in the focal plane, variation in film speed cannot be used for exposure control. Several slits have been supplied so that exposure can be controlled from sun angles of from 2 to 90 degrees and throughout the range of film speeds available (Figure 3).

Faster film speeds shorten and wider slits lengthen the exposure time. The film speed is determined by the image speed, and then the sun angle (and predicted snow cover) are viewed to find the best possible exposure. With these two parameters determined, the slit with the nearest exposure time for this combination can then be programmed.

Exposure may be determined by this formula:

T = W/VF

Where:

T = Exposure time in seconds

W = Slit width in inches

VF = Film velocity in inches per second

Unpredicted snow cover, desert scenes, and heavily wooded areas present special exposure problems. Consequently, some frames on each mission will not have the best possible exposure. These individual frames can be enhanced through printing techniques.

Control

The vehicle control system is designed to allow accurate pointing of a main camera system to the area of interest. The stereo mirror is rotated in the pitch plane of the vehicle to give the necessary angular relationship for stereoscopic coverage. The mirror can be stopped in any one of 3 positions. The effective lines of sight are 8.65 degrees forward from the vertical, vertical, and 8.65 degrees aft. Normal stereo is obtained in the forward and aft positions, but may be acquired in other modes.

The mirror is crabbed in the roll plane to compensate for the Earth's rotation.

TOP SECRET

TCS-20292/70

		S	LIT CODI	E ON FIL	-M			
SLIT NO	1	2	3	4	5	6	7	8
SLIT SIZES -> (IN)	.0036	.0056	.0086	.0135	.0207	.0322	.300 (NIGHT)	VARIABLE
.005								
CODE WIDTH (IN)			18.					
SODE WI								
.010				. —				

FIGURE 3. SLIT CODE ON FILM

Modes of Operation

The main camera can be used in various ways to provide the best views and selection of targets. These include:

Stereo: Fwd-aft, fwd-vertical, vertical-aft, fwd-vertical with aft mono, fwd-aft with vertical mono, fwd mono with vertical-aft.

Stereo: Double stereo fwd-aft of target with fwd-aft of second target interspersed.

Mono: Forward, vertical, aft, lateral pair, lateral triplet, end to end, and strip.

TOP SECRET

TCS-20292/70

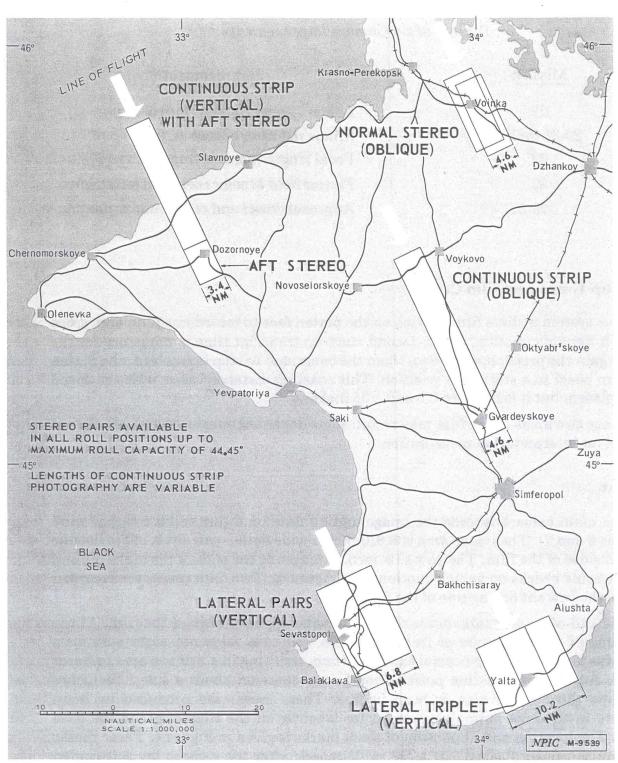


FIGURE 5. FRAME COVERAGE WITH 175.6" FOCAL LENGTH LENS

TOP SECRET

TCS-20292/70

Titling Information

Titling information is on the base side of the original negative along the edge opposite the time track. It includes:

	SAMPLE
a. Revolution number (Pass)	196
b. Frame number	27
c. Mission - bucket number.	4332-2
d. Date of actual photography	Jan 4, 1970
e. Classification	TOP SECRET RUFF
f. Index number	+33

This information is repeated on long frames within each 18 inches of film. The frame numbers remain constant within each frame, but the index numbers advance sequentially with each title. Frames are numbered sequentially within each pass, beginning with 001. Index numbers on each pass also begin with 001.

Recorded Data

The data tracks are located near the left-hand edge of the primary film (see Figure 6). These data tracks record as photographic code marks such pertinent data as vehicle time, time of terrain camera shutter actuation and roll position.

A time label is recorded on data track A at 200 millisecond intervals. Each positive bit in the time code causes a lamp to produce a 1-millisecond exposure. The first bit in the code is always positive (binary one) and serves as synchronization pulse. The synchronization pulse is followed by a 22 bit time word with least significant bit first. For example, Figure 8 reads:

binary	1	010	010	111	111	111	100	100	10
octal		2	2	7	7	7	1	0	1

or, reading from most to least significant bit, 10177722.

A slit identifier code is also recorded on the same edge of the frame as the time track. This recording identifies the slit that is being used by continuously recording a code in three channels on the film edge (Figure 3).

Data track B is a 500 pulse-per-second timing signal containing the complement time label of data track A and the terrain camera shutter actuation indicator.

FIGURE 7. PRIMARY CAMERA FILM FORMAT, FILM NEGATIVE EMULSION SIDE DOWN

TOP SECRET

TCS-20292/70

TOP SECRET

Handle Via TALENT-KEYHOLE Control System Only

TOP SECRET

TCS-20292/70

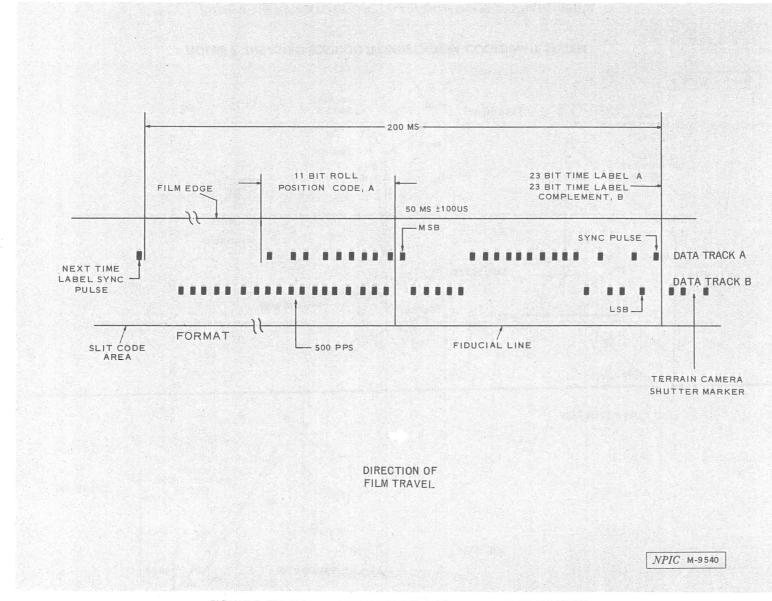
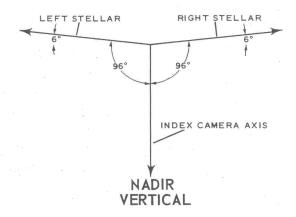
- (1) One-half of a stereo pair
- (2) Strip
- (3) One-half of a lateral pair
- (4) F = mirror fwd
- (5) V = mirror vertical
- (6) A = mirror aft
- e. Aperture designator (slit size)
- f. Cone angle (angle between nadir and principal ray)
- g. Camera roll
- h. Film velocity (theoretical & commanded) in inches/second
- i. Camera crab angle
- j. Effective shutter speed
- k. Intrack-crosstrack scale
- l. Frame altitude
- m. Skew angle
- n. Frame length in inches

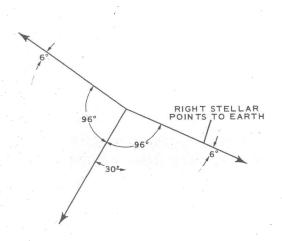
2. Target Data:

- a. Programmed (Target ID)
- b. Actual target ID, priority and X and Y coordinates on frame for target location
- c. Marginal targets
- d. Frame corners latitude and longitude
- 3. Ephemeris and Positioning Data:
 - a. System time referenced to GMT
 - b. Geodetic position of vehicle nadir
 - c. Geodetic position of intersection of camera principal ray with the earth.
 - d. Vehicle altitude
 - e. Inertial velocity & azimuth of vehicle
 - f. Flight path angle of vehicle
 - g. Sun elevation & azimuth
 - h. V/H (Velocity/Height) ratio in radians/second
 - i. Payload clock time (OCTAL)
- 4. Programmed blank frame event & corresponding data:

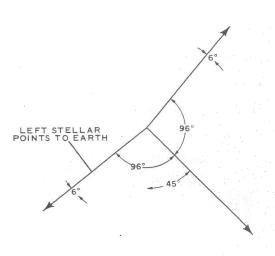
D. APTC Camera Data

- 1. Dependent operation
- 2. Independent operation


FIGURE 8. PRIMARY FILM DATA TRACKS, NEGATIVE EMULSION DOWN

TOP SECRET


TOP SECRET

TCS-20292/70

NADIR ROLL LEFT 30°

NADIR ROLL RIGHT 45°

NPIC M-9542

FIGURE 10. APTC ORIENTATION

- 17 -

Handle Via TALENT-KEYHOLE Control System Only

TOP SECRET

TCS-20292/70

Stellar Camera

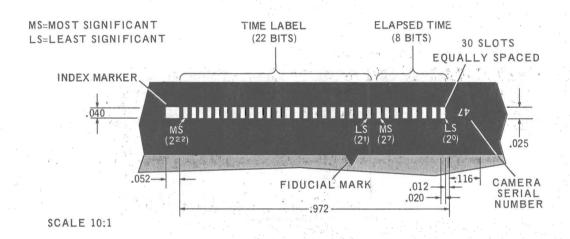
The stellar cameras, pointed out opposite sides of the vehicle, are used to match main camera frames with useable stellar frames. These cameras point with the main camera. Therefore when the main camera rolls the APTC rolls to the same place. Since high roll angles would cause a single stellar camera to be pointing at the ground half the time, two stellar cameras are required to get full coverage. They are mounted to point six degrees above the horizontal line through the vehicle to eliminate albedo light. Therefore, in the vertical and near vertical positions, two useable photographs will be taken.

The stellar cameras are f/2.0 cameras with a 90-mm focal length, a 25.6-degree field angle, and a 29 x 29mm square film format (Figure 13).

A 2.5-mm reseau grid superimposed on the format of both the stellar and terrain cameras aids in calibration and data reduction.

The stellar cameras produce two exposures with each index frame, and, since these two cameras are physically separated, the same left and right exposures are two frames apart on the film.

The exposure time selected for the stellar cameras is 0.4 seconds. However, if this should prove inadequate, it can be changed to .8, 1.2, 1.6, or 2.0 seconds as necessary on future missions.


Titling Information

The original negative on the stellar camera is not titled except for the beginning and end of each pass. The duplicate negatives are titled on the base side, the duplicate positives are titled on the emulsion side.

The information carried on the duplicate negatives and duplicate positives includes the frame number (in sequence) and the left or right designator. The sequence of photographs in each stellar pass is as follows: 1 left, blank, 2 left, 1 right, 3 left, 2 right, 4 left, 3 right, etc. The leader contains the mission number and classification. The stellar format is shown in Figure 13.

TOP SECRET

TCS-20292/70

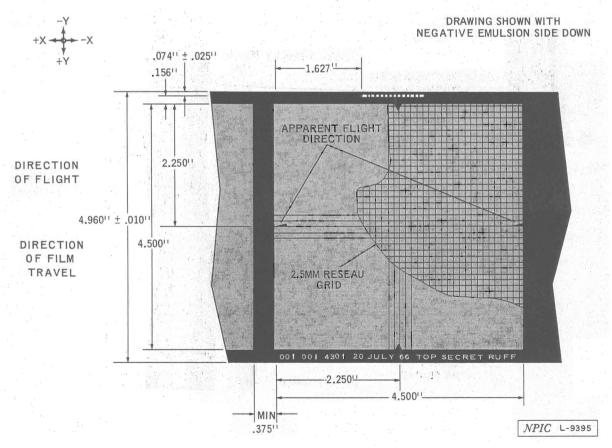


FIGURE 12. TERRAIN CAMERA FORMAT

TOP SECRET

TCS-20292/70

Data

Table 4. Stellar Camera Data

eable

APTC Operation

The APTC can operate in either a dependent mode with the main camera or in an independent mode for mapping or geodetic purposes.

The independent mode is utilized exclusively for coverage of areas of the world that have inadequate maps or inadequate geodetic bases. The dependent mode is used to match the main camera frames with reduceable stellar frames. For strip photographs of long duration, one reduceable frame will be cycled each 10 seconds of operation.

Both the terrain camera and the stellar cameras record the time of exposure to an accuracy of .001 second in a 30-bit binary time word in the space outside the frame. The stellar cameras record the time word across the format and the terrain camera records along the format. Both units record a camera number or designator at the ends of the time words. The lower 8 bits are used to designate the milliseconds of elapsed time and the higher 22 bits record the actual clock time to .1 seconds.

The stellars are presently inhibited in the near-vertical positions since attitude is not necessary in the lower roll positions. The inhibited portion of the flight is at approximately 16 degrees obliquity.

TOP SECRET

TCS-20292/70

ROLL RATE:

Motion about the longitudinal axis. Since roll change is perpendicular to the line of flight, it is so recorded by film, resulting in across-track image smears.

YAW:

Rotation from the line of flight of the longitudinal axis of the vehicle about its vertical axis. The resultant displacement of ground imagery is solely in a lateral direction and induces cross-track smearing.

YAW RATE:

Motion about the verticle axis. Smearing caused by

yaw rate is negligible.