The Post-Recombination Universe

Edited by

N. Kaiser and A. N. Lasenby

NATO ASI Series

Series C: Mathematical and Physical Sciences - Vol. 240
The Infrared Background From Stars at High Redshift

Jonathan C. McDowell

Nuffield Radio Astronomy Laboratories, Jodrell Bank, Macclesfield, Cheshire, England
SK11 0DL

As emphasized by Peebles and Partridge (1967), the light of the first stars will still
be present in the universe today as a faint background radiation. The expected energy
density of this background, if it is generated by a population of sources which convert
a fraction ϵ of their rest energy into radiation at a characteristic redshift z, may be
estimated from the simple formula

$$\Omega_R = \frac{\Omega_s}{1 + z}$$

Here Ω_s and Ω_R are the comoving mass density of the sources and the present energy den-
sity of the radiation background, both measured in units of the cosmological
density.

For nuclear burning, $\epsilon \sim (1 - 3) \times 10^{-3}$ for stars above $10^3 M_\odot$. Thus for a mass of
stars comparable with the present visible mass density ($\Omega_s \sim 10^{-2}$) at a redshift of
a few, we expect $\Omega_R \sim 10^{-5}$. For comparison, the observed energy density of the 2.74K
blackbody microwave radiation is $\Omega_{CMB} = 1.0 \times 10^{-4}$ (Here and throughout I take $H_0 =
50 \text{km/s/Mpc}$). If the dynamical dark matter is made up of the remnants of pre-
protogalactic massive stars (Truran and Cameron 1971, Carr, Bond and Arnett 1984), then we
expect $\Omega_s = 0.1$, and $z \sim 10 - 50$, again predicting $\Omega_R \sim 10^{-5}$.

The observed limits on the extragalactic background light were discussed in B.
Carr's paper in this Volume. The most important recent development is the detection of
a cosmological far infrared background by the Berkeley-Hagoya collaboration (Matsu-
umo et al 1987). This rocket experiment measured the spectrum of the background in
six channels from 100 microns to 1100 microns. The three short wavelength channels mea-
sured the spectrum of the infrared cirrus, showing that it falls off faster than λ^{-1}
at long wavelengths. The three long wavelength channels measured background radiation
in a range where galactic contributions to the signal should be small, and the points
show a significant departure from the black body curve. Subtracting the 2.7K blackbody
(whose temperature is well determined in the Rayleigh-Jeans region) reveals an excess
background between 600 microns and 1 mm, with a total energy density about 20 per cent
of the microwave background, i.e. $\Omega_R \sim 2 \times 10^{-5}$.

Matsumoto et al note that simple Comptonization models cannot fit both the excess and
the Rayleigh-Jeans temperature of the microwave background, although more sophis-
ticated models may be able to (Rapetti, in preparation). However, the excess is well
fit by a simple dust emission law with a power law opacity. The peak of the excess is
significantly narrower than a black body and a λ^{-2} opacity law fits well. This point
is illustrated in Fig. 1 where the quantity plotted is $\Omega_R(\nu)$, the energy density per
unit logarithmic frequency interval. This fit leads naturally to the interpretation of
the excess as redshifted cosmological dust emission. In agreement with Matsumoto et al

Far Infrared Background
(2.74 K Black Body subtracted)

\[\Omega_\lambda(\nu) \]

Thermal Fits

- \[X^6 e^x - 1 \]
- \[X^4 e^x - 1 \]

\[1.0 \times 10^{-5} \]
\[2.0 \times 10^{-5} \]
\[1.0 \times 10^{-5} \]

Fig. 1.

Far Infrared Background

\[\Omega_\lambda(\nu) \]

- \[10^{-4} \]
- \[10^{-5} \]
- \[10^{-6} \]

Dust and Stars \[n_{dust} = 10^{-6}, n_{stars} = 0.5, Z = 60 \]

Fig. 2.

(1987), I est
Perhaps:
which a star
galaxies and
Eberhardt 1989
curs at a suf
A more pr
ated at high:
Analytic (for
models of cos
sion temperat
a far-infrar
However the d
sumoto et al. (2
microns as [l
ground could]
properties wo
I have de
duced by sour
dust (McDowell
observations:
resulting mod
rectly with th
should be obta
good fit is in
z=60 (corresp
t with a densi
below the maxi
the contri
) is smear
Further wo
ower the requ
scenario.

References:
Bond, J.R., Carr
Carr, B.J., Bot
Draine, B.T., G
Graham, J., Wr
310, 213.
Matsumoto, T.,
ards, P.L., 198
McDowell, J.C.
McDowell, J.C.
Negroponte, J.H
Peek, J.E.
Savage, B.D., a
Truran, J.W., a
I estimate the corresponding dust temperature to be \((3.55 \pm 0.1)X\).

Perhaps the most likely scenario for producing redshifted dust emission is one in which a 'starburst era' occurs at a redshift of 5-7, with a large fraction of all protogalaxies undergoing merger and starburst events similar to objects like NCG 3256 (Graham et al 1984). However it will be difficult to find a model in which the process occurs at a sufficiently well defined epoch to give the observed narrow peak.

Another promising possibility is the reprocessing of an ultraviolet background created at high redshift by dust in the intergalactic medium or along the line of sight. Analytic (Bond, Carr and Hogan 1986) and numerical (Negroponte 1986, McDowell 1986b) models of cosmological dust emission indicate that the expected comoving dust emission temperature remains fairly constant over a wide redshift range and predicted that a far-infrared background would be produced with a rather well defined frequency peak. However the dust temperature from these models is rather higher than observed. Matsumoto et al (1987) have interpreted their measurements of the near-IR background at 2 microns as Lyman alpha emission at a redshift of 15, and suggested that the far IR background could be associated with it. However, simple models suggest that extreme dust properties would be required to fit the two measurements simultaneously.

I have developed a code for studying the cosmological background radiation produced by sources of arbitrary spectra in the presence of cosmologically distributed dust (McDowell 1986a, 1986b). I use an empirical Galactic dust opacity law based on the observations of Savage and Mathis (1979) and the models of Draine and Lee (1984). The resulting model spectra are integrated over the observational bandpass to compare directly with the data. Simple analytic models suggest that the best fit to the new data should be obtained using Population III massive stars at a redshift of about 100. A good fit is indeed obtained with a model in which stars with \(M = 0.5 \, M_\odot\) burn from \(z=50\) to \(z=60\) (corresponding to a number of stellar generations) in a universe filled with dust with a density parameter \(\Omega_d = 10^{-6}\). This tiny dust density is two orders of magnitude below the maximum amount allowed by quasar reddening observations. In this model (Fig. 2) the contribution from the silicate feature (M. Rowan-Robinson, private communication) is smeared out.

Further work is required to investigate the change in dust properties needed to lower the required emission redshift and so produce a less energetically extravagant scenario.

References