A Universe of Data

Jonathan McDowell

Smithsonian Astrophysical Observatory
21st century astronomy has seen amazing new telescopes on Earth and in space

But the new discoveries we're making are not just because of better telescopes – there's a whole new way of using them

First I'll introduce the Chandra space telescope and tell you a little about its discoveries

Then I'll explain the challenges and possibilities of astronomy in the digital age, where the software systems are as important as the space technology.
Part 1

Chandra reveals the invisible universe
In 1999 NASA launched the Chandra X-ray Observatory into space to study the invisible energetic universe.

Today, the Chandra space telescope continues to return amazing images of the cosmos – but not just images. I'll share some Chandra discoveries and then explore how astronomers use space data to unravel the stories of the heavens.
Chandra science center
Smithsonian Observatory, at Harvard (Cambridge, MA)

Chandra mission control
Near MIT in Cambridge, MA

SAO operates Chandra on behalf of NASA

Chandra mission control
Near MIT in Cambridge, MA

DSN control at Jet Propulsion Lab
Pasadena, CA

SAO operates Chandra on behalf of NASA
Let's visit the constellation Cassiopeia
In 1572, Danish astronomer Tycho Brahe recorded a 'new star' in the constellation Cassiopeia.

It was visible to the naked eye until 1574, slowly fading from view.
Credit:
The rainbow we all know is a sequence of colors from red through green and blue to violet – how our eyes make us perceive the different WAVELENGTHS or FREQUENCIES of light.

Color in light is exactly the same as 'pitch' in sound waves:
- blue is higher pitched light than red
- you can think of the invisible kinds of light like 'infrared' and 'x-ray' as different musical keys, many octaves away from the visible 'key' of light that we see.
Digression: What's an X-ray?

A lot of people are familiar with, but confused by, medical X-rays

The photo at left is a picture of an X-ray light bulb, photobombed by someone's hand

The X-rays are the light bit. The dark areas are where there aren't any X-rays because the hand has blocked them.

In X-ray astronomy we are usually taking a picture of the “light bulb” (the star making the X-rays) and not interested in the “hand” (stuff blocking the X-rays between the star and us)
Visible-light photons are like raindrops
- each one is 'small' (has a small amount of energy)
- there are lots of them, but don't do any damage

X-ray photons are like hailstones
- each one is 'big' – lots of energy
- there are many fewer of them
- but each one packs a wallop

If you up the INTENSITY (number of photons) in a beam of light you increase the total energy you get but not the energy per 'packet'
If you want to get a tan (or worse) you have to increase the energy per photon, not just the number of photons.
We have a word for the energy of a photon: “COLOR” (well, “COLOUR” but I'll defer to the local sensibility)
Milky Way galaxy: Supernova remnant (X-ray)
This was the best X-ray picture before Chandra
Milky Way Galaxy: Galactic Center
Galaxy Centaurus A (NGC 5128) - 12 million light years away
Extragalactic Universe: Active Galaxy (X-ray)
Powerful sources of X-rays

A power source entirely different from the nuclear fusion that drives the Sun and stars

...and much more efficient
The Bullet Cluster, 1E0657-56

Two clusters in collision: studying this object let us measure the dark matter

Right: what we see directly in X-rays (red) and optical

Below: blue shows the matter distribution we infer

Extragalactic universe:
Cluster of galaxies (X-ray, visible and dark-matter model)

Distance: 3.3 billion light years
Size: 3 million l.y.
Data: Maxim Markevitch et al.
Part 2
A Universe of Data

How do we take these amazing space pictures?
How do we make scientific measurements with them?
We are now in the era of multiwaveband astronomy.
Beyond the Pretty Picture

When? Timing

Where? Astrometry

How Bright? Photometry

What Color? Spectroscopy

and

How am I being fooled?

- the camera is lying to me
 bad pixels, sensitivity changes...
 instrument background...

- the software is lying to me
 processing artifacts
 calibration issues
 mismatched data

- the universe is lying to me
 Are these two objects touching each other or just in the same direction?
Different Kinds of Data 1 - Images

Calibrated brightness in milliwatts/sq m
- how bright is it in this particular wavelength range

Galactic latitude and longitude grid

Need 3 of these ("red", "green", "blue") for a color image

Date and time
Wavelength range
Which telescope and where etc etc etc
Different Kinds of Data 1(b) – Lots of Images

Data images in different color ranges

Also:

- sky background images
- bad pixel maps
- color 'gain' maps

different problems with the camera, different calibration maps to fix them

Camera sensitivity
- different for different colors
Cygnus X-1
A massive blue star slowly being eaten by its companion black hole
When the stream from the blue star hits the material swirling around the hole X-rays are produced

The Rossi XTE satellite monitored the brightness of Cyg X-1 over 14 years

Solar spectrum, 2960-13000 Angstroms
What we can learn from a spectrum:

What is the light source made of?
- this is the “fingerprint" of sodium

What are the physical conditions like?
- relative brightness and thickness of different lines indicates temperature and density

How fast is it moving?
“Doppler Shift" stretches or squeezes the spectrum: read off the speed
Different Kinds of Data 3 - Spectra

Data; J. Baldwin via NED IPAC (Caltech)
Our first image, as the spacecraft takes it wrong (and unknown) way up blurry lots of background noise
Correct for telescope motion
Remove bad energy ranges
Remove bad energy ranges
Remove bad 'grades' (probable cosmic rays), bad time intervals (solar flares)
Correct for detector sensitivity
Correct for detector sensitivity
Latitude and longitude grid etc.
And now, to the constellation Serpens...
Our first image, as the spacecraft takes it wrong way up
blurry
lots of background noise, bad columns - not obvious if we have got anything!
Corrected for telescope motion
Clip out bad color ranges – removes some bad pixels and some of the cosmic ray background
Get rid of bad columns, pixels

Get rid of some more cosmic rays ("grade filtering")

Get rid of bad time intervals
Adaptive Smoothing: desperately try and compensate for the fact that we have only a handful of X-rays.
Now we correct for the varying exposure across the image caused by imperfections in the camera and the observing process.
Isolate the region of interest
Put on the coordinate grid
Find the galaxies you are interested in
Define circles to isolate them
Now we can look at the light from those regions and play the spectrum game:
 - how hot? what's it made of? How fast is it moving?

Part 3
Astronomy Data in the New Millenium
Historical Digression

In the 1960s it was almost all done by hand... photographic plates light tables

...and so on. At this epoch response, but larger antennas would be expected to have an even lower back-lobe level.

From a combination of the above, we compute the remaining unaccounted-for antenna temperature to be $3.5^\circ \pm 1.0^\circ$ K at 4080 Mc/s. In connection with this result it should be noted that DeGrasse \textit{et al.} (1959) and Ohm (1961) give total system temperatures at...
In the 1970s we introduced computer controlled telescopes. Data was written to magnetic tape, or photographic plates digitized by primitive scanners.

Each telescope and camera had its OWN software – and was usually used by only one or a few astronomers. The software often only ran on ONE computer (not one TYPE of computer!)
In the 1980s the first generic software systems appeared

FIGARO by Keith Shortridge (1982, Caltech then AAO)

IRAF by Doug Tody (1984 at NOAO)

AIPS by Eric Greisen et al (1980 at NRAO) for radio astronomy

XSPEC by Rick Shafer, Keith Arnaud (c.1986) for X-rays

IDL (David Stern, commercial package) especially for analysis of IUE satellite data, late 1970s

Now astronomers could spend time using software instead of writing it
(Imagine if every time you needed to write a letter, you first had to invent your own equivalent of Word..)
Another crucial change in the late 1970s and early 1980s: the public archive and the beginnings of the move to open source/open data.

With HEAO-2 (Einstein) and IUE, astronomers (“Guest Observers”) across the world could request data from the telescope and come to mission control to analyse it. This drove us to standard 'data products' and formats, and user-friendly software.
Public data archives and archival research

- in the late 1980s and early 1990s it became practical to download science data over the internet.
- That forced us to be a lot more detailed in describing what the data is, so that astronomers who didn't make the observation can do something with it without making mistakes
- We even went back and read the old data tapes from old missions – gathering mold in warehouses – reformatted them and wrote the files to CD-ROM, put them online
- Expertise for different wavebands ended up in special centers

Today members of the public can download space telescope data and software for free

- learning how to use the software may be a bit more tricky!
Pasadena, California: IPAC, for Infrared Astronomy

http://irsa.ipac.caltech.edu/
Baltimore, Maryland: MAST, for UV/Optical Astronomy

Hubble Space Telescope

Hubble Space Telescope (HST) is an orbiting astronomical observatory operating from the near-infrared into the ultraviolet. Launched in 1990 and scheduled to operate through 2010, HST carries and has carried a wide variety of instruments producing imaging, spectrographic, astrometric, and photometric data through both pointed and parallel observing programs. MAST is the primary archive and distribution center for HST data, distributing science, calibration, and engineering data to HST community at large. Over 100,000 targets are available for observations.
Greenbelt, Maryland: HEASARC, for High Energy Astronomy
Cambridge, Mass: Chandra Observatory
The 21st Century Challenge: Tying It All Together

How do I find all the data for one particular galaxy? Easily combine Hubble, Chandra, ground-based images?
Outreach tools with real data: Sky in Google Earth

see also Microsoft’s World Wide Telescope
Outreach tools with real data: Sky in Google Earth

see also Microsoft's World Wide Telescope
Citizen Science, Galaxy Zoo and the 'Zooniverse'

1999: SETI@home program borgs your unused computing resources

2007: Kevin Schawinski, Chris Lintott and others enlist the public to help classify galaxies on line – using spare human-brain compute power instead of spare digital CPUs: “Galaxy Zoo”

Is it a spiral or an elliptical? Face or edge on?

Crowd-sourced science resulting in many published papers; on-line forum (Alice Sheppard et al) builds community

2012: Multiple projects including searching for extrasolar planets in Kepler light curves (“Planet Hunters”) and classifying cancer cells (Cell Slider)
How it all works: a space telescope team

Idea for experiment - astronomer anywhere in the world
Proposal planning - astronomer uses our software to see which camera is best for the experiment, how long they'd have to observe for

Proposal selection - 'peer review' by panel of experienced astronomers
Observation scheduling and planning - when is it best done? Which guide stars to use? What camera configuration?
Making the observation - flight control team sends up commands, retrieves the data
Making the calibration - Chandra's calibration team makes its own special observations throughout the year, updates our knowledge of the telescope

Data processing - go from raw data to science data with times, locations, brightness, color
Archiving - add lots of 'curation' information and stuff the data in the archive
Data analysis - astronomer gets the data from the archive, uses our software to turn the data into 'science'
Publication - astronomer writes up a paper and gets it peer-reviewed for the Astrophysical Journal, Monthly Notices of the Royal Astronomical Society, or another major journal
Astrometry: Where precisely is it on the sky?

Question: how can I find this object again?
What is its 'latitude and longitude'?

You can't just use Earth longitude – a star or galaxy rises and sets as the Earth spins. So we use a 'celestial longitude' (called 'right ascension' for historical reasons) that doesn't turn with the Earth.

Normal latitude is fine as a celestial latitude (but we call it declination also for historical reasons)

So we embed some data in the picture:

- what latitude and longitude is the middle of the picture?
- how many degrees across is the picture?
- more subtly, how do you map the sphere of the sky onto the flat picture? You probably know the 'Mercator projection' from atlases – we use a variety of different projections and we have to make a note of which one we used this time
Question: how bright is this object?
That's really two questions...

How bright does it appear to be to us? Is it blinding like the Sun, or super faint and needs a big telescope to see it?

How bright is it 'really'? That depends on how far way it is... the stars you see at night don't look as bright as the Moon but they are much, much further away, they only look faint because of their distance.

I'm going to ignore this second, harder question – once you know how bright it looks, you can figure out how bright it really is if you know the distance, but how we measure the distance to things in space is a tough problem and a whole other talk!

Even capturing exactly how bright each star and galaxy looks isn't easy. This is a process known as 'photometry'.
The human eye sees different colors than a camera
Different filters can pick out different colors
An infrared or x-ray camera sees entirely different colors invisible to the human eye

A red-colored star may be brighter than a blue one when measured in a red filter, but the other way around in a blue filter

The nebula from an exploding star may be incredibly faint seen in any visible light colors, but really bright seen with an X-ray telescope.
It's all in the timing: when did I take this image?

In ancient times we thought the skies were unchanging, but actually things change on all timescales from microseconds to gigayears.

We obviously don't want to label our data in Eastern Daylight Time – astronomy's an international subject, someone in Japan might be studying the same object. So you'd think we'd put things in Greenwich Mean Time.

We sort of do, but... astronomers are the most persnickety people when it comes to calendars and watches. It turns out that GMT (or Universal Time) is tied to the spin of the Earth, which slows up and down as the continents slide around the core.

So instead we sometimes use Terrestrial Time, which is basically atomic clock time and is about a minute off from GMT.

But wait! Einstein discovered that time isn't absolute – it runs at a different rate when you move fast (like the Earth does around the Sun) and when you go uphill in a gravity field (like the Earth does around the Sun!) So sometimes we use a Barycentric Time that corrects by a few milliseconds to account for Earth's motion around the sun.

So not only do we label our data with the time, but we must be careful to say what kind of time we used and where we measured it!