
Introduction to FITS

Jonathan McDowell

Jun 7, 1994

1

Who uses FITS?

FITS stands for Flexible Image Transport System. FITS was first

used as a tape format in 1979 to transfer data between US and Dutch

radio observatories with very different computers. It has become the

astronomy-wide standard for transporting data, and is used by many

different software packages and archives:

• AIPS: Radio data (IMAGE, ‘Random Groups’ structure)

• IRAF: export images and spectra (IMAGE).

• Various specialized optical astronomy instruments, e.g. CCD

cameras, etc. (IMAGE)

• IUE final archive (IMAGE)

• HST data (IMAGE). FITS is one of the standard export formats

available from the HST archive.

• Einstein and ROSAT (IMAGE, BINTABLE). The entire Ein-

stein archive has been converted to FITS. ROSAT used FITS

from the start for distributing its data. Rev 1 introduced a new

choice of keywords (RDF) to support multimission applications

more easily.

• All high energy missions archived or planned at Goddard: XTE,

GRO, BBXRT, SAS-2, Vela, etc. (OGIP; IMAGE, BINTABLE)

• AXAF: the ASC will provide all data to Goddard in FITS format

for archiving.

2

What is a FITS File?

• The point of FITS files is that parts of the file are in ASCII

(so they’re easy to interpret) and describe in a standard way

the contents of the rest of the file. This makes FITS files self-

documenting. The definition of the original FITS format is

in the astronomical literature so FITS files will be decodable as

long as astronomy libraries exist.

• FITS was designed for portability so the storage aspects of a

FITS file are heavily specified. For instance, real numbers must

be stored in the particular bit representation specified by the

FITS standard. FITS is required to be back compatible so that

old FITS files will never stop being valid FITS.

• In contrast, the layout of the data is NOT known in advance,

but largely specified by information in the header. This is in

contrast to most older binary data formats, e.g. Einstein XPR

files where you know which byte is going to contain what. This

means that there are an infinite number of specific file formats,

all considered to be examples of the one ‘FITS format’.

3

• Modern FITS files can contain lots of FITS ‘structures’. Older

FITS files contained only one structure, and only supported one

kind of structure, the IMAGE. For back compatibility, every

FITS file’s first structure is an IMAGE, although the IMAGE

is often zero by zero pixels. Older FITS readers may not notice

the extra structures.

4

Details of FITS file structure

• FITS files are divided into FITS Structures, also called Header

Data Units (HDUs).

• FITS Structures consist of ASCII header sections and binary

(or ASCII) data sections.

• Both the header and data sections are made up of an integer

number of FITS logical records which are 2880 bytes long.

• Headers consist of one or more ASCII header records.

• Header records consist of 80-byte ASCII subrecords called cards.

• The data section consists of zero or more data records

5

• Header units contain information allowing you to calculate the

number of records in the corresponding data unit. This allows

software to skip over the data sections without reading them.

This means that in cases where the number of output data

records is not known in advance, the output file must be re-

wound at the end to write the size information to the header - a

problem for pipe I/O.

• In contrast, the header contains no information about its own

length. Header units are terminated by an END card. There

is also in general no information about the existence of any fur-

ther HDUs. To navigate a FITS file, the following algorithm is

therefore necessary:

1. Read header records, parsing into cards until ’END’ card is

found.

2. Calculate number of data records in the HDU

3. Read or skip this number of data records

4. Iterate, reading another header unit, unless end-of-file is reached.

• Note that the sizes of a header card and a record are commensu-

rate, i.e. there are an integral number (36) of cards in a record.

In contrast, no attempt is made to make the layout of the data

in the data sections commensurate with the record size, so indi-

vidual data values may be split across records.

6

• There are three types of structure (plus some rare or home grown

ones): IMAGE, TABLE, and BINTABLE. The first data

unit in a file must be an IMAGE. Any data unit may be null

(of zero size). IMAGEs store n-dimensional matrices of data,

the most common case is a picture (2-D) or a spectrum (1-D).

TABLE stores tabular data in ASCII form, while BINTABLE

stores tabular data in binary form.

• An IMAGE data unit is an n-dimensional array of pixels, Each

pixel in an IMAGE has the same data type; allowed data types

are 1 byte unsigned integers, 2 and 4 byte signed integers and 4

and 8 byte IEEE reals.

• A TABLE data unit is a series of equal length ASCII strings

(‘rows’). Each row is divided into unequal length substrings

(‘columns’); the layout is the same for each row in the table.

• A BINTABLE data unit is a series of equal length binary rows,

divided into columns like the TABLE.

7

Examples

I now give some ASCII dumps of sample FITS files. The data sections

for these files are of course in a binary format in the actual FITS files.

The files are not good examples of FITS style since they contain very

little header information and no comments. A better example is given

in the appendix.
Here is the smallest possible valid FITS file:

SIMPLE = T / FITS STANDARD

BITPIX = 8 / Binary Data

NAXIS = 0 / No image data array present

END

consisting of a header with only the absolutely mandatory hedaer
cards and no data and no extensions. A somewhat more interesting
file is

SIMPLE = T / FITS STANDARD

BITPIX = -32 / Real Data bits per pixel

NAXIS = 2 /

NAXIS1 = 2 /

NAXIS2 = 2 /

END

1.0 0.0

0.0 1.0

which is a very small FITS IMAGE without any WCS coordinate

information.

8

A minimalist FITS BINTABLE would be

SIMPLE = T / FITS STANDARD

BITPIX = 8 / Binary Data

NAXIS = 0 /

EXTEND = T /

END

XTENSION= ’BINTABLE’ /

BITPIX = 8 / Required for table

NAXIS = 2 / Required for table

NAXIS1 = 18 / Bytes (pixels) per row

NAXIS2 = 2 / Rows

PCOUNT = 0 / Required

GCOUNT = 1 / Required

TFIELDS = 3 / Number of columns

EXTNAME = ’Example’ / Name of extension

TFORM1 = ’1J’ / 4 byte integer

TTYPE1 = ’CATNUM’ / Name of column

TFORM2 = ’1E’ / 4 byte real

TTYPE2 = ’Z’ / Name of column

TFORM3 = ’10A’ / 10 bytes string

TTYPE3 = ’NAME’ / Name of column

END

CATNUM Z NAME

273 0.158 PG1226+023

10 -0.006 Tycho SNR

9

Header Cards

Types of header card

There are 8 types of header card, corresponding to 5 data types and
three special cases COMMENT, HISTORY and END. Each card
contains an 8 byte keyword, a value, and (except for the special
cases) a comment.

--

XTENSION= ’BINTABLE’ / Character card

SIMPLE = T / Logical card

NAXIS = 2 / Integer card

EQUINOX = 2000.0 / Real card

POLZN = 4.3 -2.2 / Complex card

COMMENT This is a comment card

HISTORY History card for informational purposes

END

--

(The standard also allows for integer complex values but we recom-

mend these not be distinguished from real-valued complex values.)

Some keywords are ‘indexed keywords’ consisting of a base name and

an integer suffix - for example, there is a family of indexed keywords

TTYPEn, such as TTYPE1, TTYPE13, etc.

10

Sources of Conventions

There are five main groups of conventions which control the header

cards to be used.

• The FITS standard and associated documents (eg BINTABLE

standard) from the NASA standards office NOST. These apply

to all FITS files. They change on a sensibly long (5-10 year)

timescale).

• The WCS (World Coordinate System) draft standard from NRAO.

These apply to FITS files using the WCS coordinate conventions,

including many files used in IRAF and AIPS.

• The OFWG Recommendations from the NASA-GSFC OGIP

FITS Working Group. These apply to high energy astrophysics

data files. These are new (1993) and still changing rapidly.

• The RDF format from the NASA-GSFC and SAO ROSAT teams.

These apply to ROSAT Rev 1 files.

• The ASC FITS Group Recommendations, which apply to FITS

files generated by the ASC. These are currently TBD.

11

Is This File FITS? ... etc

• If the first 80 characters start off ”SIMPLE = T ” it thinks it’s

FITS.

• It really is FITS if:

– It consists of valid header and data sections

– You can access it as a 2880 byte direct access file

– the MANDATORY KEYWORDS are all there

– The number of bytes in the data section is as predicted in

the header

– The data is stored in the right IEEE bit pattern.

• All other “standards” come down to particular conventions on

what header keywords have special meanings, and what specific

structure designs are recognized.

• Example: the TSI extension in ROSAT Rev1 FITS files. What

makes the extension FITS is that it is a BINTABLE FITS struc-

ture with header keywords that define the columns present in the

data. What makes it a TSI extension is that the BINTABLE

has the title TSI and contains the columns TIME, LOGICAL,

FAILED, etc. What makes it RDF is the specific choice of header

keywords used to describe certain quantities: ROLL NOM for

the nominal roll angle, for instance.

12

Reading a FITS file

If you want to dump the contents of a FITS file, use the FTOOLS
task FDUMP or my own program FITSREAD.

/proj/jcm/bin/fitsread test.fits test.lis dump ! Dumps the file

/proj/jcm/bin/fitsread test.fits - scan ! Summarizes the file

iraf> fdump test.fits

If you want to write a program to read in values from a FITS file

and manipulate them, use Bill Pence’s FITSIO library or my own

JCMFITS library, or just open the file as a direct access, 2880-byte

unformatted file and interpret the data yourself.

Writing a FITS file is pretty easy. I append an example using the

JCMFITS library, writing a FITS file with two binary table exten-

sions.

13

Writing a FITS file

Suppose we want to write the simple binary table example I gave
earlier. The following program writes a slightly more verbose version
with an IMAGE extension as well..

program fits_test

! Compile this program using:

! f77 -u -xl -o fits_test fits_test.o -L/proj/jcm/JCM/lib -lnjcmfits -lnjcmutils

!

integer fptr ! Pointer to FITS file

integer status ! I/O status

! Executable statements start here

call jcmlib_init

! Create new file

call open_fits_w(’table.fit’, fptr, status)

call null_header(fptr)

call table(fptr)

call image(fptr)

! Close the file

call close_fits(fptr)

end

subroutine null_header(fptr)

integer fptr ! (i) FITS file pointer

! Write the null primary header

! Write the primary header mandatory keys

call fits_bttop(fptr)

! Write a comment card

call fits_wcmt(fptr, ’Test Binary Table file’)

! Close out the primary header

call fits_ehead(fptr)

end

subroutine table(fptr)

integer fptr ! (i) FITS file pointer

integer row

14

! Declare table structures

integer naxis1, naxis2, tfields

parameter (tfields=3) ! Number of columns

parameter (naxis1 = 18) ! Number of bytes per row

parameter (naxis2 = 2) ! Number of rows

character*8 tform(tfields) ! Type of columns

character*8 ttype(tfields) ! Names of columns

character*8 tunit(tfields) ! Units of columns

character*32 cform(tfields) ! Comment on type

character cunit(tfields) ! Comment on units

character*32 ctype(tfields) ! Comment on names

character*8 tdisp(tfields) ! Display formats

! Declare table data arrays

integer namelen

parameter (namelen=10)

integer catnum(naxis2)

real z(naxis2)

character*(namelen) name(naxis2)

! Here we define the structure of the table

data tform / ’1J’, ’1E’, ’10A’ /

data ttype / ’CATNUM’, ’Z’, ’NAME’ /

data tunit / tfields*’ ’/

data cform / ’Long integer’,’Single precision real’,’String’/

data cunit / tfields*’ ’/

data ctype / ’Catalog designation’, ’Redshift’, ’Name’/

data tdisp / ’I6’,’F7.3’,’A10’/

! Now define the data values

data catnum / 273, 10 /

data z / 0.158, -0.006 /

data name / ’PG1226+023’, ’Tycho SNR’ /

! Write the table extension

!

! Write table header description

call fits_bthead(fptr, ’Example’, ’Name of extension’,

& naxis1, tfields, tform, ttype, tunit, cform, ctype, cunit,

& tdisp, naxis2)

! Write another keyword we just invented

call fits_wicard(fptr, ’VERSION’, 2, ’Version number of file’)

! Close out the table header

15

call fits_ehead(fptr)

! Start writing the data

do row = 1, naxis2

call fits_puti(fptr, catnum(row))

call fits_putr(fptr, z(row))

call fits_putc(fptr, name(row), namelen)

enddo

! Fill out the logical record with nulls and write buffer

call fits_edata(fptr)

end

!

subroutine image(fptr)

integer fptr ! (i) FITS file pointer

! Write an example 2x2 image

integer bitpix

parameter (bitpix = -32) ! Real data

integer naxis

parameter (naxis =2)

integer naxisn(naxis)

real image_array(2,2)

integer i,j

data naxisn / 2, 2 / ! 2 x 2 image

data image_array / 1.5, 2.5, 3.5, 4.5 /

! Write mandatory keys

call fits_wpkeys(fptr, ’IMAGE’, bitpix, naxis, naxisn,

& ’Example2’, ’Example of IMAGE extension’)

! Write a WCS, the hard way

call fits_wrcard(fptr, ’EQUINOX’, 2000.0D0, ’J2000’)

call fits_wccard(fptr, ’RADECSYS’, ’FK5’, ’J2000’)

call fits_wccard(fptr, ’CTYPE1’, ’RA---TAN’,’Projection’)

call fits_wccard(fptr, ’CTYPE2’, ’DEC--TAN’,’Projection’)

call fits_wrcard(fptr, ’CRPIX1’, 1.0, ’Reference pixel’)

call fits_wrcard(fptr, ’CRPIX2’, 1.0, ’Reference pixel’)

call fits_wrcard(fptr, ’CRVAL1’, 95.12, ’RA (deg)’)

call fits_wrcard(fptr, ’CRVAL2’, -30.12, ’Dec (deg)’)

call fits_wrcard(fptr, ’CDELT1’, -0.001, ’Deg per pixel’)

call fits_wrcard(fptr, ’CDELT2’, 0.001, ’Deg per pixel’)

call fits_wccard(fptr, ’CUNIT1’, ’deg’, ’Unit of RA’)

call fits_wccard(fptr, ’CUNIT2’, ’deg’, ’Unit of Dec’)

! Close the header

16

call fits_ehead(fptr)

! Write the data

do j = 1, naxisn(2)

do i = 1, naxisn(1)

call fits_putr(fptr, image_array(i,j))

enddo

enddo

call fits_edata(fptr)

end

17

WORLD COORDINATE SYSTEM (WCS)

The idea of WCS is to have a convention describing in the header the

coordinate system used in the data. The description defines that co-

ordinate system in terms of other coordinate systems already known

to the user (because their definitions are published). Examples: im-

age pixels to sky RA and Dec, spacecraft mission time to UTC Julian

Date.

The model for WCS is that the transformation between the coords

used in the data (pixel coords) and the global coords (world coords)

is locally linear. This means we can define an intermediate coor-

dinate system which is just a linear transform of the pixel coords to

scale and align them with the global system.

• For 1D cases, we just need to scale the coordinates and register

them on the absolute system. We use the keyword xDELTn (e.g.

CDELT2, TDELT4) to give the the value of the scale. We use

the keyword CRPIXn or TCRPXn to select a reference pixel

and the keyword CRVALn or TCRVLn to give the value of the

world coordinates at that pixel.

• For 2D cases, we also need to align the coordinate systems. This

can be done using a set of rotation matrix keywords.

• In cases where the linearity of the transformation is only local, we

then need to define the non-linear transformation between the

locally linear system and the global world coordinate system.

This is done using CTYPEn and TCTYPn keywords to report

18

the type of transformation used. The most common one is the

tangent plane mapping

CTYPE1=’RA---TAN’, CTYPE2=’DEC--TAN’

19

REFERENCES

FITS Standard:

nssdca.gsfc.nasa.gov::anon dir/fits/fits standard.ps, users guide.ps

WCS Draft:

fits.cv.nrao.edu::fits/documents/wcs/wcs.ps.all.Z

Original FITS papers:

Greisen, Wells, and Harten, 1980, SPIE 264, 298.

Wells, Greisen and Harten, 1981, Astron. Astrophys. Suppl., 44,

363.

Greisen and Harten, 1981. Astron Astrophys. Suppl., 44, 371.

20

Appendix: A FITS summary sheet
There are some simplifications in this description, and the reader is referred to the FITS

Standard for the truth.

FITS Structures
IMAGE FITS Image header and array.
TABLE FITS ASCII table
BINTABLE FITS binary table

The first structure is special: it is called the Primary Array, it must be of type IMAGE,
and the first card is SIMPLE instead of XTENSION. For TABLE and BINTABLE, the value
of BITPIX must be 8. The number of bits in the data array following the header is always

NBITS = |BITPIX| ×GCOUNT × (PCOUNT +
NAXIS∏
m=1

NAXISm)

FITS header cards are divided into several fields:
Bytes Field
1-8 Keyword name
9-10 Value indicator
11-30 Value field
31-50 Imaginary part value field
11-80 Comment or string value field

Keywords are 8 characters long, contain the characters 0-9, A-Z, , and –. Blanks (ASCII
hex 20) are permitted only at the end of the keyword. Note that lower case letters are not
permitted. The value indicator field is an equals sign followed by a blank, if it is present.

FITS Header card types
Type ‘=’ present? Value
INTEGER Y Columns 11-30, right justified
REAL Y Columns 11-30, right justified, Fortran F or E format
LOGICAL Y Column 30, T or F
CHARACTER Y Column 11: quote (hex 27)

Column 12-(n− 1): string value
Column n: quote (hex 27)
Require 20 ≤ n ≤ 80

COMPLEX Y Column 11-30 (real part), 31-50 (Imag part)
COMMENT N Text in column 9-80
HISTORY N Text in column 9-80
END N Column 4-80 must be blank

21

Header Card Type Special Values Meaning

Mandatory cards
SIMPLE Logical T FITS File (Primary array only)
XTENSION Character ‘IMAGE’ Structure is an IMAGE

‘BINTABLE’ Strucure is a BINTABLE
‘TABLE’ Structure is an ASCII table

BITPIX Integer 8 Byte array
16 Short integer array
32 Long integer array
-32 Real array
-64 Double precision array

NAXIS Integer Number of axes (2 for tables)
NAXIS1 Integer Number of elements for axis 1
EXTEND Logical T Primary data array may not

be the only structure
PCOUNT Integer 0 Required for tables
GCOUNT Integer 1 Required for tables
TFIELDS Integer Number of table columns (tables only)
EXTNAME Character Name of this structure (not allowed for primary array)
END END Marks last header card. Data does not

begin until next 2880 byte logical record.

22

Header Card Type Special Values Meaning

Special repeatable keywords
COMMENT Comment Arbitrary ASCII text
HISTORY History Text describing how data was processed

Keywords reserved by FITS standard
DATE Character ‘12/31/94’ UT Date structure was created
ORIGIN Character ‘SAO’ Organization creating file
DATE-OBS Character ‘12/31/94’ UT Date observation was made
TELESCOP Character ‘ROSAT’ Telescope or satellite used
INSTRUME Character ‘IPC-1’ Detector used
OBSERVER Character ‘E. Hubble’ Name of observer or PI
OBJECT Character ‘Barnard”s Star’ Name of object or field observed
EQUINOX Real 2000.0 Equinox of positions (used by WCS)
AUTHOR Character ‘W. Shakespeare’ Who compiled the data in this file
REFERENC Character ‘J.I.R. 14, 121 (1994)’ Where this data is published

Keywords used to define ASCII tables
TBCOLn Integer 1 Byte position of start of column n
TFORMn Character ‘F8.4’ Format to read column n with
TTYPEn Character ‘XVAL’ Name of column n

Keywords used to define binary tables
TTYPEn Character ‘XVAL’ Name of column n
TFORMn Character ‘3E’ Binary content of column n (see below)
TDISPn Character ‘F8.4’ Format to print column n with

Keywords reserved but deprecated by FITS standard
BLOCKED
EPOCH

23

Binary table column types

Each column in a binary table is defined by a TFORMn keyword whose value is of the
form rT, represening a vector of type T and dimension r. The dimension r is an integer
(usually 1, except when the type is A (alphabetic)) and the type T is a character, defining
both the number of bytes taken up by each element of the vector and the data type of the
vector. Possible values are listed below:

Common BINTABLE TFORMn values
TFORM Bytes Meaning
1I 2 Signed Integer
1J 4 Signed Integer
1E 4 Real
1D 8 Real
1A 1 ASCII character
1L 1 ’T’ or ’F’

Other BINTABLE TFORMn values
8X 8 Bits
1C 8 Complex
1M 16 Complex
1B 1 Unsigned integer
1P 8 Reserved for variable array convention

24

Scaling of data values and coordinates

The IMAGE arrays contain pixel values and pixel numbers. Both may require rescaling
to physical values. The TABLE data may also require rescaling. The table below lists the
keywords in use in the high energy astrophysics community (specifically GSFC and SAO) to
represent these rescalings. We use a linear rescaling:

y = y0 + ∆(x− x0)

where y and y0 have the units YUNIT and the name of Y is YNAME. The linear rescaling
then is reprojected using a projection of type PROJ. Null values are represented for x of type
real by an IEEE NaN value, and for x of type integer by a selected ‘dud’ integer value xNaN

(e.g. -99 or something). The header may also contain the maximum and minimum valid
values of y, ymax and ymin to aid in displaying the data. Note that these are the extremes
ALLOWED, and the particular dataset may not reach these extremes.

Quanitity IMAGE data1 IMAGE axis n TABLE data, col. n 3

PROJ - CTYPEn - TCTYPn
YNAME - - TTYPEn TTYPEn
YUNIT BUNIT CUNITn TUNITn TCUNIn
x0 - CRPIXn - TCRPXn
y0 BZERO CRVALn TZEROn TCRVLn
∆ BSCALE CDELTn TSCALn TCDLTn
ymin DATAMIN - - TLMINn
ymax DATAMAX - - TLMAXn
xNaN BLANK - TNULLn -

Note: 1) x0 = 0 is required for IMAGE data.
2) Data in italics represents keywords not in the FITS standard or WCS proposals.

3) The first set of conventions for TABLEs considers them as data, the second considers them as
pixel lists. The overlap is unfortunate as there is no fundamental distinction.

25

